Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
2.
Curr Oncol ; 31(4): 1839-1864, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38668042

ABSTRACT

Understanding the diversity in cancer research priorities and the correlations among different treatment modalities is essential to address the evolving landscape of oncology. This study, conducted in collaboration with the European Cancer Patient Coalition (ECPC) and Childhood Cancer International-Europe (CCI-E) as part of the "UNCAN.eu" initiative, analyzed data from a comprehensive survey to explore the complex interplay of demographics, time since cancer diagnosis, and types of treatments received. Demographic analysis revealed intriguing trends, highlighting the importance of tailoring cancer research efforts to specific age groups and genders. Individuals aged 45-69 exhibited highly aligned research priorities, emphasizing the need to address the unique concerns of middle-aged and older populations. In contrast, patients over 70 years demonstrated a divergence in research priorities, underscoring the importance of recognising the distinct needs of older individuals in cancer research. The analysis of correlations among different types of cancer treatments underscored the multidisciplinary approach to cancer care, with surgery, radiotherapy, chemotherapy, precision therapy, and biological therapies playing integral roles. These findings support the need for personalized and combined treatment strategies to achieve optimal outcomes. In conclusion, this study provides valuable insights into the complexity of cancer research priorities and treatment correlations in a European context. It emphasizes the importance of a multifaceted, patient-centred approach to cancer research and treatment, highlighting the need for ongoing support, adaptation, and collaboration to address the ever-changing landscape of oncology.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Male , Aged , Middle Aged , Female , Biomedical Research , Adult , Demography , Research , Europe
3.
ChemMedChem ; : e202300655, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529661

ABSTRACT

Cancer stem cells (CSCs) are a niche of highly tumorigenic cells featuring self-renewal, activation of pluripotency genes, multidrug resistance, and ability to cause cancer relapse. Seven HDACi (1-7), showing either hydroxamate or 2'-aminoanilide function, were tested in colorectal cancer (CRC) and glioblastoma multiforme (GBM) CSCs to determine their effects on cell proliferation, H3 acetylation levels and in-cell HDAC activity. Two uracil-based hydroxamates, 5 and 6, which differ in substitution at C5 and C6 positions of the pyrimidine ring, exhibited the greatest cytotoxicity in GBM (5) and CRC (6) CSCs, followed by the pyridine-hydroxamate 2, with 2- to 6-fold higher potency than the positive control SAHA. Finally, increased H3 acetylation as well as HDAC inhibition directly in cells by selected 2'-aminoanilide 4 and hydroxamate 5 confirmed target engagement. Further investigation will be conducted into the broad-spectrum anticancer properties of the most potent derivatives and their effects in combination with approved, conventional anticancer drugs.

4.
Heliyon ; 10(1): e23914, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38234913

ABSTRACT

Next-generation sequencing (NGS) and liquid biopsy (LB) showed positive results in the fight against different cancer types. This paper aims to assess the uptake of advanced molecular diagnostics/NGS for quick and efficient genetic profiles of tumour cells. For that purpose, the European Alliance for Personalised Medicine conducted a series of expert interviews to ascertain the current status across member states. One stakeholder meeting was additionally conducted to prioritize relevant factors by stakeholders. Seven common pillars were identified, and twenty-five measures were defined based on these pillars. Results showed that a multi-faceted approach is necessary for successful NGS implementation and that regional differences may be influenced by healthcare policies, resources, and infrastructure. It is important to consider different correlations when interpreting the results and to use them as a starting point for further discussion.

5.
J Transl Med ; 22(1): 29, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38184610

ABSTRACT

BACKGROUND: The current therapeutic algorithm for Advanced Stage Melanoma comprises of alternating lines of Targeted and Immuno-therapy, mostly via Immune-Checkpoint blockade. While Comprehensive Genomic Profiling of solid tumours has been approved as a companion diagnostic, still no approved predictive biomarkers are available for Melanoma aside from BRAF mutations and the controversial Tumor Mutational Burden. This study presents the results of a Multi-Centre Observational Clinical Trial of Comprehensive Genomic Profiling on Target and Immuno-therapy treated advanced Melanoma. METHODS: 82 samples, collected from 7 Italian Cancer Centres of FFPE-archived Metastatic Melanoma and matched blood were sequenced via a custom-made 184-gene amplicon-based NGS panel. Sequencing and bioinformatics analysis was performed at a central hub. Primary analysis was carried out via the Ion Reporter framework. Secondary analysis and Machine Learning modelling comprising of uni and multivariate, COX/Lasso combination, and Random Forest, was implemented via custom R/Python scripting. RESULTS: The genomics landscape of the ACC-mela cohort is comparable at the somatic level for Single Nucleotide Variants and INDELs aside a few gene targets. All the clinically relevant targets such as BRAF and NRAS have a comparable distribution thus suggesting the value of larger scale sequencing in melanoma. No comparability is reached at the CNV level due to biotechnological biases and cohort numerosity. Tumour Mutational Burden is slightly higher in median for Complete Responders but fails to achieve statistical significance in Kaplan-Meier survival analysis via several thresholding strategies. Mutations on PDGFRB, NOTCH3 and RET were shown to have a positive effect on Immune-checkpoint treatment Overall and Disease-Free Survival, while variants in NOTCH4 were found to be detrimental for both endpoints. CONCLUSIONS: The results presented in this study show the value and the challenge of a genomics-driven network trial. The data can be also a valuable resource as a validation cohort for Immunotherapy and Target therapy genomic biomarker research.


Subject(s)
Early Detection of Cancer , Melanoma , Humans , Melanoma/genetics , Proto-Oncogene Proteins B-raf , Genomics , Italy
6.
Healthcare (Basel) ; 12(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275541

ABSTRACT

Improvements in cancer care require a new degree of collaboration beyond the purely medical sphere, extending deeply into the world of other stakeholders-preeminently patients but also the other stakeholders in the hardware and software of care. Cancer remains a global health challenge, necessitating collaborative efforts to understand, prevent, and treat this complex disease. To achieve this goal, a comprehensive analysis was conducted, aligning the prioritization of cancer research measures in 13 European countries with 13 key recommendations for conquering cancer in the region. The study utilized a survey involving both patients and citizens, alongside data from IQVIA, a global healthcare data provider, to assess the availability and access to single-biomarker tests in multiple European countries. The results revealed a focused approach toward understanding, preventing, and treating cancer, with each country emphasizing specific research measures tailored to its strengths and healthcare objectives. This analysis highlights the intricate relationship between research priorities, access to biomarker tests, and financial support. Timely access to tests and increased availability positively influence research areas such as cancer prevention, early detection, ageing, and data utilization. The alignment of these country-specific measures with 13 recommendations for conquering cancer in Europe underscores the importance of tailored strategies for understanding, preventing, and treating cancer.

7.
Cancer Discov ; 14(1): 30-35, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38213296

ABSTRACT

To enable a collective effort that generates a new level of UNderstanding CANcer (UNCAN.eu) [Cancer Discov (2022) 12 (11): OF1], the European Union supports the creation of a sustainable platform that connects cancer research across Member States. A workshop hosted in Heidelberg gathered European cancer experts to identify ongoing initiatives that may contribute to building this platform and discuss the governance and long-term evolution of a European Federated Cancer Data Hub.


Subject(s)
Neoplasms , Humans , Research , European Union
9.
Autophagy ; 19(10): 2733-2751, 2023 10.
Article in English | MEDLINE | ID: mdl-37418591

ABSTRACT

Apoptosis is a tightly controlled cell death program executed by proteases, the so-called caspases. It plays an important role in tissue homeostasis and is often dysregulated in cancer. Here, we identified FYCO1, a protein that promotes microtubule plus end-directed transport of autophagic and endosomal vesicles as a molecular interaction partner of activated CASP8 (caspase 8). The absence of FYCO1 sensitized cells to basal and TNFSF10/TRAIL-induced apoptosis by receptor accumulation and stabilization of the Death Inducing Signaling Complex (DISC). Loss of FYCO1 resulted in impaired transport of TNFRSF10B/TRAIL-R2/DR5 (TNF receptor superfamily member 10b) to the lysosomes in TNFSF10/TRAIL-stimulated cells. More in detail, we show that FYCO1 interacted via its C-terminal GOLD domain with the CCZ1-MON1A complex, which is necessary for RAB7A activation and for the fusion of autophagosomal/endosomal vesicles with lysosomes. We demonstrated that FYCO1 is a novel and specific CASP8 substrate. The cleavage at aspartate 1306 resulted in the release of the C-terminal GOLD domain, inactivating FYCO1 function, and allowing for the progression of apoptosis. Furthermore, the lack of FYCO1 resulted in a stronger and prolonged formation of the TNFRSF1A/TNF-R1 signaling complex. Thus, FYCO1 limits the ligand-induced and steady-state signaling of TNFR-superfamily members, providing a control mechanism that fine-tunes both apoptotic and inflammatory answers.Abbreviations: AP: affinity purification; CHX: cycloheximide; co-IP: co-immunoprecipitation; CRISPR: clustered regularly interspaced short palindromic repeats; DISC: death-inducing signaling complex; DR: death receptors; doxy: doxycycline; GEF: guanine nucleotide exchange factor; ind: inducible; KD: knockdown; KO: knockout; MS: mass spectrometry; shRNA: short hairpin RNA; siRNA: small interfering RNA; TIP: two-step co-immunoprecipitation; WB: western blot.


Subject(s)
Autophagy , Receptors, TNF-Related Apoptosis-Inducing Ligand , Caspase 8/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Apoptosis , Caspases/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Tumor Necrosis Factor-alpha/metabolism , Caspase 9/metabolism
10.
Biomed Pharmacother ; 162: 114679, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37068332

ABSTRACT

Colorectal cancer (CRC) is the second most common cause of cancer death, leading to almost 1 million deaths per year. Despite constant progress in surgical and therapeutic protocols, the 5-year survival rate of advanced CRC patients remains extremely poor. Colorectal Cancer Stem Cells (CRC-CSCs) are endowed with unique stemness-related properties responsible for resistance, relapse and metastasis. The development of novel therapeutics able to tackle CSCs while avoiding undesired toxicity is a major need for cancer treatment. Natural products are a large reservoir of unexplored compounds with possible anticancer bioactivity, sustainability, and safety. The family of meroterpenoids derived from sponges share interesting bioactive properties. Bioassay-guided fractionation of a meroterpenoids extract led to the isolation of three compounds, all cytotoxic against several cancer cell lines: Metachromins U, V and W. In this study, we evaluated the anticancer potential of the most active one, Metachromins V (MV), on patient-derived CRC-CSCs. MV strongly impairs CSCs-viability regardless their mutational background and the cytotoxic effect is maintained on therapy-resistant metastatic CSCs. MV affects cell cycle progression, inducing a block in G2 phase in all the cell lines tested and more pronouncedly in CRC-CSCs. Moreover, MV triggers an important reorganization of the cytoskeleton and a strong reduction of Rho GTPases expression, impairing CRC-CSCs motility and invasion ability. By Proteomic analysis identified a potential molecular target of MV: CCAR1, that regulates apoptosis under chemotherapy treatments and affect ß-catenin pathway. Further studies will be needed to confirm and validate these data in in vivo experimental models.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Humans , Proteomics , Cell Line, Tumor , Neoplasm Recurrence, Local/pathology , Colorectal Neoplasms/pathology , Antineoplastic Agents/pharmacology , Neoplastic Stem Cells/metabolism , Cell Cycle Proteins/metabolism , Apoptosis Regulatory Proteins/metabolism
11.
Front Immunol ; 14: 1175503, 2023.
Article in English | MEDLINE | ID: mdl-37114038

ABSTRACT

Cancer immunotherapy is the great breakthrough in cancer treatment as it displayed prolonged progression-free survival over conventional therapies, yet, to date, in only a minority of patients. In order to broad cancer immunotherapy clinical applicability some roadblocks need to be overcome, first among all the lack of preclinical models that faithfully depict the local tumor microenvironment (TME), which is known to dramatically affect disease onset, progression and response to therapy. In this review, we provide the reader with a detailed overview of current 3D models developed to mimick the complexity and the dynamics of the TME, with a focus on understanding why the TME is a major target in anticancer therapy. We highlight the advantages and translational potentials of tumor spheroids, organoids and immune Tumor-on-a-Chip models in disease modeling and therapeutic response, while outlining pending challenges and limitations. Thinking forward, we focus on the possibility to integrate the know-hows of micro-engineers, cancer immunologists, pharmaceutical researchers and bioinformaticians to meet the needs of cancer researchers and clinicians interested in using these platforms with high fidelity for patient-tailored disease modeling and drug discovery.


Subject(s)
Neoplasms , Humans , Neoplasms/pathology , Organoids , Drug Discovery , Immunotherapy , Tumor Microenvironment
12.
Cancer Metastasis Rev ; 42(1): 197-215, 2023 03.
Article in English | MEDLINE | ID: mdl-36757577

ABSTRACT

The biological complexity of cancer represents a tremendous clinical challenge, resulting in the frequent failure of current treatment protocols. In the rapidly evolving scenario of a growing tumor, anticancer treatments impose a drastic perturbation not only to cancer cells but also to the tumor microenvironment, killing a portion of the cells and inducing a massive stress response in the survivors. Consequently, treatments can act as a double-edged sword by inducing a temporary response while laying the ground for therapy resistance and subsequent disease progression. Cancer cell dormancy (or quiescence) is a central theme in tumor evolution, being tightly linked to the tumor's ability to survive cytotoxic challenges, metastasize, and resist immune-mediated attack. Accordingly, quiescent cancer cells (QCCs) have been detected in virtually all the stages of tumor development. In recent years, an increasing number of studies have focused on the characterization of quiescent/therapy resistant cancer cells, unveiling QCCs core transcriptional programs, metabolic plasticity, and mechanisms of immune escape. At the same time, our partial understanding of tumor quiescence reflects the difficulty to identify stable QCCs biomarkers/therapeutic targets and to control cancer dormancy in clinical settings. This review focuses on recent discoveries in the interrelated fields of dormancy, stemness, and therapy resistance, discussing experimental evidences in the frame of a nonlinear dynamics approach, and exploring the possibility that tumor quiescence may represent not only a peril but also a potential therapeutic resource.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Neoplastic Stem Cells/pathology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Disease Progression , Tumor Microenvironment
13.
J Exp Clin Cancer Res ; 41(1): 305, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36245005

ABSTRACT

BACKGROUND: Molecular tumor boards (MTBs) match molecular alterations with targeted anticancer drugs upon failure of the available therapeutic options. Special and local needs are most likely to emerge through the comparative analysis of MTB networks, but these are rarely reported. This manuscript summarizes the state-of-art of 16 active Italian MTBs, as it emerges from an online survey curated by Alliance Against Cancer (ACC). MAIN TEXT: Most MTBs (13/16) are exclusively supported through local Institutional grants and meet regularly. All but one adopts a fully virtual or a mixed face-to-face/virtual calling/attendance meeting model. It appears that the ACC MTB initiative is shaping a hub-and-spoke virtual MTB network reminiscent of non-redundant, cost-effective healthcare organization models. Unfortunately, public awareness of MTB opportunities presently remains insufficient. Only one center has a website. Dedicated e-mail addresses are for the exclusive use of the MTB staff. More than half of ACC members consider a miscellanea of most or all solid and hematological malignancies, and more than one-third consider neoplasms arising at any anatomical location. The average number of Staff Members in MTBs is 9. More than 10 staff members simultaneously attend MTB meetings in 13 MTBs. A medical oncologist is invariably present and is in charge of introducing the clinical case either with (45%) or without previous discussion in organ-specific multidisciplinary Boards. All but two MTBs take charge of not only patients with no standard-of-care (SoC) therapy option, but also cases receiving NGS profiling in SoC settings, implying a larger number of yearly cases. All MTBs run targeted NGS panels. Three run whole-exome and/or RNAseq approaches. ESCAT-ESMO and/or Onco-KB levels of evidence are similarly used for diagnostic reporting. Most MTBs (11) provide a written diagnostic report within 15 days. Conclusions are invariably communicated to the patient by the medical oncologist. CONCLUSIONS: MTB networking is crucial not only for molecular diagnosis and therapy assignment, but also for healthcare governance. Survey results show that MTBs review therapeutic opportunities at the crossover between standard-of-care with off-label, the former task being much beyond their scope. Societal and scientific implications of this beyond-the-scope MTB function may be relevant for healthcare in Italy and abroad.


Subject(s)
Neoplasms , Humans , Italy , Neoplasms/drug therapy , Neoplasms/epidemiology , Neoplasms/genetics
14.
Cancers (Basel) ; 14(19)2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36230758

ABSTRACT

The Hippo pathway and its two key effectors, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), are consistently altered in breast cancer. Pivotal regulators of cell metabolism such as the AMP-activated protein kinase (AMPK), Stearoyl-CoA-desaturase 1 (SCD1), and HMG-CoA reductase (HMGCR) are relevant modulators of TAZ/YAP activity. In this prospective study, we measured the tumor expression of TAZ, YAP, AMPK, SCD1, and HMGCR by immunohistochemistry in 65 Her2+ breast cancer patients who underwent trastuzumab-based neoadjuvant treatment. The aim of the study was to assess the impact of the immunohistochemical expression of the Hippo pathway transducers and cell metabolism regulators on pathological complete response. Low expression of cytoplasmic TAZ, both alone and in the context of a composite signature identified by machine learning including also low nuclear levels of YAP and HMGCR and high cytoplasmic levels of SCD1, was a predictor of residual disease in the univariate logistic regression. This finding was not confirmed in the multivariate model including estrogen receptor > 70% and body mass index > 20. However, our findings were concordant with overall survival data from the TCGA cohort. Our results, possibly affected by the relatively small sample size of this study population, deserve further investigation in adequately sized, ad hoc prospective studies.

15.
Healthcare (Basel) ; 10(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36011235

ABSTRACT

As Europe and the world continue to battle against COVID, the customary complacency of society over future threats is clearly on display. Just 30 months ago, such a massive disruption to global lives, livelihoods and quality of life seemed unimaginable. Some remedial European Union action is now emerging, and more is proposed, including in relation to tackling "unmet medical need" (UMN). This initiative-directing attention to the future of treating disease and contemplating incentives to stimulate research and development-is welcome in principle. But the current approach being considered by EU officials merits further discussion, because it may prove counter-productive, impeding rather than promoting innovation. This paper aims to feed into these ongoing policy discussions, and rather than presenting research in the classical sense, it discusses the key elements from a multistakeholder perspective. Its central concern is over the risk that the envisaged support will fail to generate valuable new treatments if the legislation is phrased in a rigidly linear manner that does not reflect the serpentine realities of the innovation process, or if the definition placed on unmet medical need is too restrictive. It cautions that such an approach presumes that "unmet need" can be precisely and comprehensively defined in advance on the basis of the past. It cautions that such an approach can reinforce the comfortable delusion that the future is totally predictable-the delusion that left the world as easy prey to COVID. Instead, the paper urges reflection on how the legislation that will shortly enter the pipeline can be phrased so as to allow for the flourishing of a culture capable of rapid adaptation to the unexpected.

16.
Cancers (Basel) ; 14(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35954367

ABSTRACT

Lung cancer is the leading cause of cancer death worldwide. Despite significant advances in research and therapy, a dismal 5-year survival rate of only 10-20% urges the development of reliable preclinical models and effective therapeutic tools. Lung cancer is characterized by a high degree of heterogeneity in its histology, a genomic landscape, and response to therapies that has been traditionally difficult to reproduce in preclinical models. However, the advent of three-dimensional culture technologies has opened new perspectives to recapitulate in vitro individualized tumor features and to anticipate treatment efficacy. The generation of lung cancer organoids (LCOs) has encountered greater challenges as compared to organoids derived from other tumors. In the last two years, many efforts have been dedicated to optimizing LCO-based platforms, resulting in improved rates of LCO production, purity, culture timing, and long-term expansion. However, due to the complexity of lung cancer, further advances are required in order to meet clinical needs. Here, we discuss the evolution of LCO technology and the use of LCOs in basic and translational lung cancer research. Although the field of LCOs is still in its infancy, its prospective development will likely lead to new strategies for drug testing and biomarker identification, thus allowing a more personalized therapeutic approach for lung cancer patients.

17.
Nat Immunol ; 23(9): 1379-1392, 2022 09.
Article in English | MEDLINE | ID: mdl-36002648

ABSTRACT

Cancer stem cells (CSCs) are a subpopulation of cancer cells endowed with high tumorigenic, chemoresistant and metastatic potential. Nongenetic mechanisms of acquired resistance are increasingly being discovered, but molecular insights into the evolutionary process of CSCs are limited. Here, we show that type I interferons (IFNs-I) function as molecular hubs of resistance during immunogenic chemotherapy, triggering the epigenetic regulator demethylase 1B (KDM1B) to promote an adaptive, yet reversible, transcriptional rewiring of cancer cells towards stemness and immune escape. Accordingly, KDM1B inhibition prevents the appearance of IFN-I-induced CSCs, both in vitro and in vivo. Notably, IFN-I-induced CSCs are heterogeneous in terms of multidrug resistance, plasticity, invasiveness and immunogenicity. Moreover, in breast cancer (BC) patients receiving anthracycline-based chemotherapy, KDM1B positively correlated with CSC signatures. Our study identifies an IFN-I → KDM1B axis as a potent engine of cancer cell reprogramming, supporting KDM1B targeting as an attractive adjunctive to immunogenic drugs to prevent CSC expansion and increase the long-term benefit of therapy.


Subject(s)
Breast Neoplasms , Epigenesis, Genetic , Histone Demethylases , Interferon Type I , Anthracyclines/metabolism , Anthracyclines/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Histone Demethylases/metabolism , Humans , Interferon Type I/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
18.
J Thorac Oncol ; 17(6): 751-757, 2022 06.
Article in English | MEDLINE | ID: mdl-35351670

ABSTRACT

Mutations in the KEAP1-NRF2 pathway are common in NSCLC, albeit with a prevalence of KEAP1 mutations in lung adenocarcinoma and an equal representation of KEAP1 and NFE2L2 (the gene encoding for NRF2) alterations in lung squamous cell carcinoma. The KEAP1-NRF2 axis is a crucial modulator of cellular homeostasis, enabling cells to tolerate oxidative and metabolic stresses, and xenobiotics. The complex cytoprotective response orchestrated by NRF2-mediated gene transcription embraces detoxification mechanisms, ferroptosis protection, and metabolic reprogramming. Given that the KEAP1-NRF2 pathway controls core cellular functions, it is not surprising that a number of clinical studies connected KEAP1 mutations to increased resistance to chemotherapy, radiotherapy, and targeted agents. More recently, an immune-cold tumor microenvironment was described as a typical feature of KEAP1-mutant lung adenocarcinoma. Consistently, a reduced efficacy of immunotherapy was reported in the KEAP1-mutant background. Nevertheless, the connection between KEAP1 and immune resistance seems more complex and dependent on coexisting genomic alterations. Given the clinical implications of deregulated KEAP1-NRF2 pathway in lung cancer, the development of pathway-directed anticancer treatments should be considered a priority in the domain of thoracic oncology.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Adenocarcinoma of Lung/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Lung Neoplasms/pathology , Mutation , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Tumor Microenvironment
19.
J Exp Clin Cancer Res ; 41(1): 86, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35260172

ABSTRACT

BACKGROUND: Circulating tumor cells (CTCs) are responsible for the metastatic dissemination of colorectal cancer (CRC) to the liver, lungs and lymph nodes. CTCs rarity and heterogeneity strongly limit the elucidation of their biological features, as well as preclinical drug sensitivity studies aimed at metastasis prevention. METHODS: We generated organoids from CTCs isolated from an orthotopic CRC xenograft model. CTCs-derived organoids (CTCDOs) were characterized through proteome profiling, immunohistochemistry, immunofluorescence, flow cytometry, tumor-forming capacity and drug screening assays. The expression of intra- and extracellular markers found in CTCDOs was validated on CTCs isolated from the peripheral blood of CRC patients. RESULTS: CTCDOs exhibited a hybrid epithelial-mesenchymal transition (EMT) state and an increased expression of stemness-associated markers including the two homeobox transcription factors Goosecoid and Pancreatic Duodenal Homeobox Gene-1 (PDX1), which were also detected in CTCs from CRC patients. Functionally, CTCDOs showed a higher migratory/invasive ability and a different response to pathway-targeted drugs as compared to xenograft-derived organoids (XDOs). Specifically, CTCDOs were more sensitive than XDOs to drugs affecting the Survivin pathway, which decreased the levels of Survivin and X-Linked Inhibitor of Apoptosis Protein (XIAP) inducing CTCDOs death. CONCLUSIONS: These results indicate that CTCDOs recapitulate several features of colorectal CTCs and may be used to investigate the features of metastatic CRC cells, to identify new prognostic biomarkers and to devise new potential strategies for metastasis prevention.


Subject(s)
Colorectal Neoplasms , Neoplastic Cells, Circulating , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Epithelial-Mesenchymal Transition/physiology , Humans , Neoplastic Cells, Circulating/metabolism , Organoids/metabolism , Stem Cells/metabolism
20.
Comput Methods Programs Biomed ; 217: 106655, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35158181

ABSTRACT

BACKGROUND: The COVID-19 pandemic affected healthcare systems worldwide. Predictive models developed by Artificial Intelligence (AI) and based on timely, centralized and standardized real world patient data could improve management of COVID-19 to achieve better clinical outcomes. The objectives of this manuscript are to describe the structure and technologies used to construct a COVID-19 Data Mart architecture and to present how a large hospital has tackled the challenge of supporting daily management of COVID-19 pandemic emergency, by creating a strong retrospective knowledge base, a real time environment and integrated information dashboard for daily practice and early identification of critical condition at patient level. This framework is also used as an informative, continuously enriched data lake, which is a base for several on-going predictive studies. METHODS: The information technology framework for clinical practice and research was described. It was developed using SAS Institute software analytics tool and SAS® Vyia® environment and Open-Source environment R ® and Python ® for fast prototyping and modeling. The included variables and the source extraction procedures were presented. RESULTS: The Data Mart covers a retrospective cohort of 5528 patients with SARS-CoV-2 infection. People who died were older, had more comorbidities, reported more frequently dyspnea at onset, had higher d-dimer, C-reactive protein and urea nitrogen. The dashboard was developed to support the management of COVID-19 patients at three levels: hospital, single ward and individual care level. INTERPRETATION: The COVID-19 Data Mart based on integration of a large collection of clinical data and an AI-based integrated framework has been developed, based on a set of automated procedures for data mining and retrieval, transformation and integration, and has been embedded in the clinical practice to help managing daily care. Benefits from the availability of a Data Mart include the opportunity to build predictive models with a machine learning approach to identify undescribed clinical phenotypes and to foster hospital networks. A real-time updated dashboard built from the Data Mart may represent a valid tool for a better knowledge of epidemiological and clinical features of COVID-19, especially when multiple waves are observed, as well as for epidemic and pandemic events of the same nature (e. g. with critical clinical conditions leading to severe pulmonary inflammation). Therefore, we believe the approach presented in this paper may find several applications in comparable situations even at region or state levels. Finally, models predicting the course of future waves or new pandemics could largely benefit from network of DataMarts.


Subject(s)
COVID-19 , Artificial Intelligence , COVID-19/epidemiology , Clinical Decision-Making , Humans , Pandemics , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...